WORD

  .... 1

 

.... 5

 

 

Excel, X Y . Excel, .

 

NCSS + Advanced Grapher

NCSS Advanced Grapher. Advanced Grapher , . NCSS, (R2).

agrapher setup. Setup . Next, Yes, Netxt, Next, Install! ! Language Russian ʻ! , , Ok, Finish.

NCSS Setup, Next, Next, Next, Next, Next. ! Finish. Serial Number serial NCSS.

Advanced Grapher (->->Advanced Grapher->Advanced Grapher). , . EXCEL ( excel , ), X 1 30 Y, . . , . , . , . . , . , . ..

NCSS (->->NCSS2001->NCSS). Excel NCSS . Analisis, Regression / Correlation, Nonlinear Regression. Dependent Variable C# (# - , 1), Model Advanced Grapher, X C# (# - (Y), 2). , A-K. Parameter -, , . . , Parameter delete.

play. . :

Model Estimation Section

 

Parameter Parameter Asymptotic Lower Upper

Name Estimate Standard Error 95% C.L. 95% C.L.

A -1,200672 24,71262 -51,9982 49,59686

B -0,5890055 18,35304 -38,31421 37,1362

C 1,558306 6,013903E-02 1,434688 1,681923

D 0,8139814 9,580705 -18,87944 20,5074

 

Model C2 = (A+B*C1+LNE(C1)+C1^D)*(1+TAN(C))

R-Squared 0,414641 ( R-)

Iterations 39

Estimated Model

((-1.200672)+(-.5890055)*(C1)+LN((C1))+(C1)^(.8139814))*(1+TAN((1.558306))) ( )

1 .

 

SPSS

SPSS , .

SPSS Setup. Install SPSS, Next, Yes, Next. Name , Organization Home, Serial Number 12345, Next. Next, Next. license codes 30001359390 update! 30001374190 update ! Next, Next. ! Next. ! Register Later Next! Finish!

: . Analyze Regression Linear. Dependent () Independent () . Statistics Estimates R squares change. .

. :

Coefficients(a)

 

Model

Unstandardized Coefficients

Standardized Coefficients

t

Sig.

B

Std. Error

Beta

1

(Constant)

-360,667 ( )

179,773

-2,006

,055

VAR00001

47,619

( )

10,126

,664

4,703

,000

a Dependent Variable: VAR00002

Constant Y=A+BX, VAR00001 B .

: y = 360,773 + 10,126x

EXCEL, . :

Model Summary

 

Model

R

R Square*

Adjusted R Square

Std. Error of the Estimate

1

,693(a)

,480

,462

5247,54015

a Predictors: (Constant), VAR00001

 

*R Square R2 = 0,48

( File>save) - .

(. ).

Analyze Regression>Curve Estimation. X ( var0000#). Independent. Y. Dependent(s). (Linear (y=A+Bx), Logarithmic (y=A+Bln(x)) , Quadratic (y=A+Bx+Cx2), Cubic (y=A+Bx+Cx2+Dx3), Exponential - (y=AeBx), . Display ANOVA table. ! :

MODEL: MOD_1.

_

 

 

 

Dependent variable.. VAR00002 Method.. LINEAR ( )

 

R2

 

Listwise Deletion of Missing Data

 

Multiple R ,94481

R Square ,89266 ( R2 = 0,89266)

Adjusted R Square ,85688

Standard Error ,72769

 

( ).

 

-------------------- Variables in the Equation --------------------

 

Variable B SE B Beta T Sig T

 

VAR00001 ,039746 (B) ,007957 ,944809 4,995 ,0154

(Constant) ,763440 (A) ,689550 1,107 ,3490

_

 

R2 .

 

Dependent variable.. VAR00002 Method.. LOGARITH

 

Listwise Deletion of Missing Data

 

Multiple R ,98102

R Square ,96240

Adjusted R Square ,94986

Standard Error ,43071

 

 

 

 

 

 

 

 

-------------------- Variables in the Equation --------------------

 

Variable B SE B Beta T Sig T

 

VAR00001 2,643864 () ,301728 ,981018 8,762 ,0031

(Constant) -7,187536 () 1,268649 -5,666 ,0109

_

 

 

 

Dependent variable.. VAR00002 Method.. QUADRATI

 

Listwise Deletion of Missing Data

 

Multiple R ,98114

R Square ,96264

Adjusted R Square ,92527

Standard Error ,52583

 

-------------------- Variables in the Equation --------------------

 

Variable B SE B Beta T Sig T

 

VAR00001 ,111383 () ,037460 2,647734 2,973 ,0969

VAR00001**2 -,000460 () ,000238 -1,723348 -1,935 ,1926

(Constant) -1,256433 () 1,156547 -1,086 ,3908

_

 

 

 

Dependent variable.. VAR00002 Method.. CUBIC

 

Listwise Deletion of Missing Data

 

Multiple R ,98114

R Square ,96264

Adjusted R Square ,92527

Standard Error ,52583

 

 

 

-------------------- Variables in the Equation --------------------

 

Variable B SE B Beta T Sig T

 

VAR00001 ,111383 () ,037460 2,647734 2,973 ,0969

VAR00001**2 -,000460 () ,000238 -1,723348 -1,935 ,1926

VAR00001**3 -,000460 (D) ,000238 -1,723348 -1,935 ,1926

(Constant) -1,256433 () 1,156547 -1,086 ,3908

 

 

MODEL: MOD_2.

_

 

 

 

Dependent variable.. VAR00002 Method.. EXPONENT

 

Listwise Deletion of Missing Data

 

Multiple R ,62912

R Square ,39579

Adjusted R Square ,37422

Standard Error ,93918

 

Analysis of Variance:

 

DF Sum of Squares Mean Square

 

Regression 1 16,178677 16,178677

Residuals 28 24,697791 ,882064

 

F = 18,34184 Signif F = ,0002

 

-------------------- Variables in the Equation --------------------

 

Variable B SE B Beta T Sig T

 

VAR00001 ,084844 (B) ,019811 ,629122 4,283 ,0002

(Constant) 40,623960 (A) 14,287380 2,843 ,0082

 

! : File>Save!

STATREG 3

.

, . , . , .

, , .

(R), . R > 0 , R < 0 . , R > 0,6, R < 0,6 , .

:

, /

, .

1

1960

12

2

1961

15

3

1962

13

4

1963

17

5

1964

20

 

1.      N enter ( 5);

2.      X(1) 1,2,3 N enter ( 1,2,3,4,5);

3.      Y(1) - enter (12,15,13,17,20);

4.      :

AB1= 1.121516

SGA= 1.712698

SGB= 1.607066

SGC= 3.757543

SGD= 2.109505

SE= 18.66104

SGE= 2.494062

SGP= 1.764734

SGL= 1.723667

= 1,60706567764282

a=1, b=2, c=3, d=4, e=5, p=6, l=7.

( 2);

5.      , ( 2005 45);

6.      , .

7.      , 1 .

8.      STATREG3.txt ( Word, : , , Word). :

1 1 5 144 12

1.25 1.5 5 369 27

1.361111 1.833333 5 538 40

1.423611 2.083333 5 827 57

1.463611 2.283334 5 1227 77

AB1= 1.121516

SGA= 1.712698

SGB= 1.607066

SGC= 3.757543

SGD= 2.109505

SE= 18.66104

SGE= 2.494062

SGP= 1.764734

SGL= 1.723667

AB0= 10.73303 AB1= 1.121516 RB= .8840982 ( ) DB= 78.16296

Y X? , , , =-1.

YB= 1870.564 ( 2005 .)

9. ( .Statreg.doc)

 

 

ARMSTAT

- . .

, . , . .

(s), 10 15 %.

:

, /

, .

1

1960

12

2

1961

15

3

1962

13

4

1963

17

5

1964

20

 

1.      Basic.exe4

2.      F3;

3.      Load . apm ENTER!

4.      F2;

5.      ;

6.      2 enter ;

7.      2 enter ;

8.      2!

9.      ( 5);

10.  1 1,2,3 N enter ( 1,2,3,4,5);

11.  2 - enter (12,15,13,17,20);

12.  1 enter ;

13.  1 enter ;

14.  5 enter ;

15.  2 enter ;

16.  2

17.  0.

18.  (-1)!

19.  1 enter ;

20.  1 enter ;

21.  .txt. ( Word, : , , Word) :

:

Y= 0.100E+02 +1.800E+00*X1 ( )

A H H E O T K O H E H

1 12.00 11.80 0.20 1.67%

2 15.00 13.60 1.40 9.33%

3 13.00 15.40 -2.40 -18.46%

4 17.00 17.20 -0.20 -1.18%

5 20.00 19.00 1.00 5.00%

A

K - 2.518182

C 2.288819E-06 1.48324

-.5450478 C..O. .3535534

AC-.8634135 C..O. .6123725

= 7.13% ( )

T- :

B1 3.323469

F- 11.04546

1

3

(R) .9904102

R- .9809124

_

1 , ( 2005 45) ( : Y= 0.100E+02 +1.800E+00*X1 -> Y=0,1+1,8*45 -> Y=81,1)

22.  ( .Statreg.doc).

 

EXCEL

( ). : > ;

:

, /

, .

1

1960

12

2

1961

15

3

1962

13

4

1963

17

5

1964

20

 

 

1.      , :

 

1

1

12

2

2

15

3

3

13

4

4

17

5

5

20

 

 

2.      : > >

3.      Y , , Y ( 12,15,13,17,20) ;

4.      ջ , , ( 1,2,3,4,5) ;

5.      , ( C1) ;

6.      : ;

7.      , . , .

8.      , :

-         ;

-         ;

-         ;

-         ;

-         ;

. ( 2010 50). (R^2)! !

9.      , , ( 2005 45, 2010 - 50) !

10.  !

 

MATCAD 8.01.

, , .

(, , , , ..).

, f(x) :

f(x) = a×x + b

:

corr (vx ; vy) - ;

intercept (vx ; vy) - b, ;

slope (vx ; vy) - - .

: . , ( 30, 30- , - 1). , 1 30, .

, :

a: = slope(vx;vy)

b:= intercept(vx;vy)

corr(vx;vy)= - ( ).

:

f(x) = a∙x + b

a:=

b:= ( a b )

, :

f( , )=

2005 2010 , 34 39.

f() - , . , :

X-Y

- corr(vx;vy). 1, , , . R ≥ |0,6.

 

SPSS, NCSS Advanced Grapher .

STATREG ARMSTAT .

 

! !